Constituents with a Novel Skeleton Isolated from Amentotaxus formosana

by Shiow-Hwa Day

School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan 807, and Ta-Jen Institute of Technology, Ping Tung Hsien, Taiwan 907, Republic of China

and

Huey-Jen Su and Chun-Nan Lin*

School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan 807, Republic of China

and

Sheng-Zehn Yang

Department of Forest Resource, Management and Technology, National Pintung University of Science and Technology, Ping Tung Hsien, Taiwan 912, Republic of China

A novel compound consisting of two diterpenoid substructures, amentotaxin BA (1), and two novel terpenoids with a new skeleton, amentotaxins WA (2) and WB (3), were isolated from the barks and heart woods of *Amentotaxus formosana*, respectively. Their structures, including the relative configuration, were elucidated from spectroscopic data and a computer-generated plot for the 3D structure.

1. Introduction. – Amentotaxus formosana LI (Amentotaxaceae) is a tree endemic to southeastern Taiwan. Recently, two new lanostanoids, isolated from the leaf of Amentotaxus formosana, have been reported [1]. As part of a continued search for novel bioactive constituents from this plant, a novel compound consisting of two diterpenoid substructures, amentotaxin BA (1), and two novel terpenoids with a new skeleton, amentotaxins WA (2) and WB (3), were isolated from the CHCl₃ extract of air-dried barks and heart woods of A. formosana, respectively. In the present paper, the structure elucidations of the novel compounds are reported.

2. Results and Discussion. – Amentotaxin BA (1), a colorless, optically active oil, revealed a M^+ at m/z 614.3975 in the high-resolution MS, which corresponds to the molecular formula $C_{40}H_{54}O_5$. The IR absorption of 1 implied the presence of an OH (3440 cm⁻¹) and two carbonyl groups (1713 and 1650 cm⁻¹), which were confirmed by ¹³C-NMR data (off-resonance *s* at δ 213.4 and 221.5), and an aromatic ring (1620 cm⁻¹) moiety. The proposed structure for amentotaxin BA (1; see *Fig. 1*) was deduced from extensive analysis of the 1D and 2D NMR data, including those from COSY, HMQC, HMBC, and NOESY experiments in CDCl₃ (*Table 1*).

The ¹H- and ¹³C-NMR spectra of **1** displayed signals of a moiety with three angular Me groups at $\delta(H) 0.80$, 0.86, and 1.07, an sp³ CH₂ group $\delta(H) 1.85$ (d, J = 12.6 Hz, H_{β}-C(14)) and 2.41 (d, J = 12.6 Hz, H_a-(14)), an olefinic proton at $\delta(H) 6.65$ (d, J = 6.8 Hz), and a carbonyl group at $\delta(C)$ 221.5, and were similar to those of *ent*-</sub>

Fig. 1. Structure of **1** including selected NOESY correlations, relative configuration, and major MS fragmentation pattern. Arbitrary numbering.

kaur-16-en-15-one, except for the absence of signals of an exocyclic methylene and a cyclic skeletal methine group [2]. In addition to the above evidence, the 1H- and 13C-NMR data (Table 1) revealed signals due to a pentasubstituted benzene ring, an iPr, two tertiary Me, a phenolic OH and a MeO group, and two sp3 CH2, two sp3 CH, an OCH, a quarternary, and a carbonyl C-atom. The HMBC correlations Me(16')/C(13'), C(15'), and C(17'), Me(17')/C(13') and C(15'), H-C(14')/C(7'), C(8'), C(9'), and C(12'), and Me(20')O/C(12'), and the NOESY cross-peak H-C(14')/Me(16') established the pentasubstituted benzene moiety. The COSY correlations $H-C(7')/CH_2(6')$ and $CH_2(6')/H-C(5')$, and the HMBC correlation C(7')/H-C(14') established the connection between C(5') to C(8'). The HMBC correlation $C(10')/H_a - C(6')$ and the C(10') being a quarternary C-atom established that C(5') was linked via C(10') to C(9'). The COSY correlation H-C(1')/CH₂(2'), the HMBC correlations C(3')/H-C(1'), Me(19')/C(3'), C(18'), and C(4'), Me(18')/C(4') and C(19'), and $C(10')/H_{\alpha}-C(6')$, and the C(10') being a quarternary C-atom established the connectivity of ring C'. The HMBC correlations H-C(1')/C(16) and C(17), and C(1')/H-C(17), the COSY correlation H-C(1')/C(16)H-C(17), and both the C(10') and C(13) being quarternary C-atoms established the connection between C(10') to C(13) and that of C(1') to C(16) via C(17). In the EI-MS of **1** (Fig. 1), significant peaks at m/z 596 $([M-H_2O]^+)$, 330 $([M-a]^+)$, 310 $([596-a-2H]^+)$, and 270 $([330-H_2O-CH(CH_3)_2+H]^+)$ also supported the structure of 1. The NOESY experiment of 1 showed cross-peaks as shown in the computergenerated 3D drawing . The relative configurations at C(1'), C(5'), and C(7') were deduced from the NOESY cross-peaks H_{α} -C(6')/H-C(5'), H-C(5')/Me(18'), and H-C(1')/H-C(5'), establishing that H-C(1') and H-C(5') are on the α -side. The NOESY cross-peak H_{β}-C(6')/H-C(7') suggested that OH-C(7') adopted the α -configuration.

Based on the information from ¹H,¹H-COSY, and NOESY data of **1**, a computerassisted 3D structure was obtained with the molecular-modeling program CS CHEM 3D V3.5.1, by means of a MM2 force-field calculation for energy minimization. The calculated distances between H_a -C(1')/H-C(17) (2.651 Å), H_a -C(1')/ H_a -C(5') (3.981 Å), H_a -C(5')/ H_a -C(6') (2.309 Å), H_a -C(5')/Me(18') (2.418 Å), H_β -C(6')/ H_β -C(7') (2.461 Å), H_β -C(7')/H-C(14') (2.275 Å), H-C(14')/H-C(15') (2.236 Å), H-C(14')/Me(16') (3.640 Å), Me(17')/Me(12')O (2.848 Å), Me(12')O/OH-C(11') (2.019 Å), and OH-C(11')/H-C(17) (3.326 Å) are all less than 4.00 Å, which is

	$\delta(H)$	$\delta(C)$	HMBC (1H)		$\delta(H)$	$\delta(C)$	HMBC (1H)
2 H-C(1)	1.70 (<i>m</i>)	39.3	1.07 (Me(20))	H-C(1')	3.26 (ddd, J = 13.1, 13.1, 6.8)	53.2	6.65 (H-C(17))
2 H-C(2)	1.69 (<i>m</i>)	18.6		2 H-C(2')	1.27 $(dd, J = 13.1, 6.8)$	29.7	
2 H-C(3)	1.35(m), 1.09(m)	41.8	0.86 (Me(19))	C(3')		213.4	3.26 (H-C(1')), 0.95 (Me(19'))
C(4)		33.2	0.80 (Me(18))	C(4')		47.1	1.04 (Me(18')), 0.95 (Me(19'))
H-C(5)	3.29 (dd, J = 13.1, 6.8)	55.2	1.07 (Me(20)), 0.86 (Me(19))	H-C(5')	2.15 (br. s)	38.6	
2 H-C(6) 2 H-C(7)	1.69 (<i>m</i>) 1.83 (<i>m</i>)	18.6 27.7		H_{α} -C(6') H_{β} -C(6')	1.80 (m) 2.00 (dd, J = 13.4, 4.1)	38.0	
C(8)		52.2		$H_{\beta}-C(7')$	4.87 (<i>dd</i> , <i>J</i> = 12.0, 4.1)	66.8	7.06 (H-C(14'))
H-C(9)	1.04 (<i>m</i>)	52.9	1.07 (Me(20))	C(8')	· · · · /	138.0	7.06 (H-C(14'))
C(10)		39.8		C(9')		117.1	7.06 (H-C(14'))
2 H-C(11)	1.32 (<i>m</i>)	18.3		C(10')		46.4	6.65 (H–C(17)), 0.95 (Me(19')), 1.80 (H _a –C(6'))
				C(11')		146.4	(u ())
2H-C(12)	2.15 (m)	34.7		OH-C(11')	6.09 (s)		
C(13)		51.6		C(12')		143.4	7.06 (H-C(14')) 3.80 (Me(20')O)
$H_{\alpha}-C(14)$	2.41 $(d, J = 12.6)$	35.1		C(13')		140.1	1.25 (Me(16'))
$H_{\beta}-C(14)$	1.85 (m)			H - C(14')	7.06(s)	114.4	
C(15)		221.5	$2.41 (H_a - C(14))$	H - C(15')	3.26 (m)	26.8	1.25 (Me(16'))
C(16)		142.4	3.26 (H-C(1'))	Me(16')	1.25 (d, J = 6.8)	23.5	
H-C(17)	6.65 (<i>d</i> , <i>J</i> = 6.8)	120.0	3.26 (H-C(1'))	Me(17')	1.25 (d, J = 6.8)	23.8	1.25 (Me(16'))
Me(18)	0.80 (s)	21.5		Me(18')	1.04 (s)	20.2	0.95 (Me(19'))
Me(19)	0.86 (s)	33.4	0.80 (Me(18))	Me(19')	0.95 (s)	24.6	1.04 (Me(18'))
Me(20)	1.07 (s)	17.5		Me(20')O	3.80 (s)	61.9	

Table 1. ¹H- and ¹³C-NMR Data (δ in ppm, J in Hz) of **1** in CDCl₃^a). Arbitary numbering (see Fig. 1).

consistent with the well-defined NOEs observed for each of these proton pairs (*Fig. 1*). Thus, the structure $\mathbf{1}$ for amentotaxin BA, with a configuration as shown in *Fig. 1*, was confirmed.

The molecular formula of amentotaxin WA (**2**; $C_{18}H_{20}O_3$) was established by HR-EI-MS (m/z 284.1409, M^+). The IR absorptions of **2** implied the presence of an OH (3171 cm⁻¹), a C=O (1720 cm⁻¹), and an α_{β} -unsaturated carbonyl group (1636 cm⁻¹), besides an aromatic ring (1600 cm⁻¹). The structure proposed for **2** (*Fig.* 2) was deduced from extensive analysis of 1D and 2D NMR data, including those from COSY, HMQC, HMBC, and NOESY experiments in (CD₃)₂CO (*Table 2*).

The ¹H-NMR spectrum of **2** showed signals for two tertiary Me groups at δ 1.59 and 1.60, and a *cis*disubstituted olefin moiety at δ 6.13 (d, J = 9.6 Hz, 1 H) and 7.68 (d, J = 9.6 Hz, 1 H), an aromatic proton at δ 7.32 (s), and a phenolic OH at δ 8.63 (br. s). The above evidence suggested that **2** contained a phenolic OH group at a disubstituted 1,1-dimethylnaphthalene-2(1*H*)-one moiety [3]. The ¹H-NMR spectrum of **2** also

Fig. 2. Structure of 2 and 3, with major MS fragmentations and NOESY correlations. Arbitrary numbering.

revealed signals for two secondary Me groups at $\delta 0.80$ (d, J = 6.8 Hz) and 1.05 (d, J = 6.8 Hz), a CH₂ group at $\delta 2.94$ (dd, J = 17.6, 3.6 Hz, 1 H) and 3.23 (dd, J = 17.6, 8.0 Hz, 1 H), and two CH protons at $\delta 2.31$ (m) and 2.72 (m). The ¹³C-NMR spectrum showed signals for four Me, a CH₂, and two CH groups and for two olefinic, a tertiary aromatic, and eight quarternary C-atoms. The HMBC correlations of H–C(5)/C(4), C(6), C(7), and C(11) (*Table 2*), and the NOESY cross-peak of OH–C(8)/H_a–C(9) (*Fig. 2*) confirmed the presence of a 6,7-disubstituted 8-hydroxy-1,1-dimethylnaphthalene-2(1*H*)-one moiety in **2**. The COSY correlations CH₂(9)/H–C(10), H–C(12), H–C(12)/Me(13) and Me(14), and HMBC correlations (*Table 2*) established the 2-isopropylcyclopentan-1-one moiety. The EI-MS of **2** showed significant peaks at m/z 242 ($[M - a + H]^+$), 214 ($[242 - CO]^+$), and 181 ($[M - b - 2 H]^+$) which also supported the structure of **2**.

The molecular formula of amentotaxin WB ($\mathbf{3}$; $C_{18}H_{18}O_4$) was established by HR-EI-MS (m/z 298.1209, M^+). The IR absorptions of $\mathbf{3}$ implied the presence of an OH group (3244 cm⁻¹), a γ -lactone ring (1743 cm⁻¹), an α,β -unsaturated carbonyl group (1652 cm⁻¹), and an aromatic ring (1562 cm⁻¹). The proposed structure of $\mathbf{3}$ (*Fig.* 2) was deduced from extensive analysis of 1D and 2D NMR data, including those from COSY, HMQC, HMBC, and NOESY experiments in (CD₃)₂CO (*Table 2*).

The ¹H-NMR spectrum of **3** showed signals for two tertiary Me groups at δ 1.54 and 1.55, and a *cis*disubstituted olefin moiety at δ 6.07 (d, J=9.6 Hz, 1 H) and 7.60 (d, J=9.6 Hz, 1 H), an aromatic proton at δ 7.18 (s), and a phenolic OH at δ 8.36 (br. s). The above evidence suggested that also 3 contained a phenolic OH group at a disubstituted 1,1-dimethylnaphthalene-2(1H)-one moiety [3]. The ¹H-NMR spectrum of 3 also revealed signals for a secondary Me group at δ 1.25 (d, J = 72 Hz), a CH₂ group at δ 2.87 (dd, J = 17.2, 4.8 Hz, 1 H) and 3.16 (dd, J = 17.2, 8.8 Hz, 1 H), three CH groups at δ 3.13 (m), 3.47 (m), and 5.67 (d, J = 6.0 Hz). The ¹³C-NMR spectrum showed signals for three Me, a CH₂, and three CH groups and for two olefinic, a tertiary aromatic, and eight quarternary C-atoms. The HMBC correlations H-C(5)/C(4), C(7), and C(8a) (Table 2), and the NOESY cross-peak $OH-C(8)/H_a-C(9)$ (Fig. 2) confirmed the presence of a 6,7-disubstituted 8hydroxy-1,1-dimethylnaphthalene-2(1H)-one moiety in 3. The COSY correlations CH₂(9)/H-C(10), H-C(10)/H-C(11) and H-C(13), and H-C(13)/Me(14) confirmed the connectivities between C(9) to C(11), C(10) to C(13), and C(13) to C(14). The HMBC correlations H_{β} -C(9)/C(6), C(7), and C(8), and $H_a - C(9)/C(7)$ established the connectivity between C(7) and C(9). The HMBC correlations Me(14)/C(13) and Me(14)/C(13) and Me(14)/C(13). C(12) established the connectivity between C(12) and C(13). The HMBC correlations H-C(5)/C(11) and H-C(11)/C(7), and NOESY cross-peak H-C(5)/H-C(11) established the connectivity between C(6) and C(11). In addition to the above HMQC, COSY, and HMBC correlations, the ¹³C-NMR spectrum of 3 revealed a

	2			3			
	$\delta(\mathrm{H})$	$\delta(C)$	HMBC (1H)	$\delta(\mathrm{H})$	$\delta(C)$	HMBC (1H)	
C(1)		47.5	6.13 (H–C(3)), 1.60 (Me(15)),		47.1	6.07 (H-C(3)), 1.54 (Me(15)),	
C(2)		203.7	1.60 (Me(16)) 7.68 (H $-$ C(4)), 1.60 (Me(15)), 1.60 (Me(16))		204.3	1.54 (Me(16)) 7.60 (H $-$ C(4)), 1.54 (Me(15)) 1.54 (Me(16))	
H-C(3)	6.13 (d, J = 9.6)	125.1		6.07 (d, J = 9.6)	124.3		
H-C(4) C(4a)	7.68 $(d, J = 9.6)$	146.2 135.1	7.32 (H–C(5)) 6.13 (H–C(3)), 7.68 (H–C(4))	7.60 $(d, J = 9.6)$	146.5 131.2	7.18 (H–C(5)) 6.07 (H–C(3))	
H = C(5)	7.32(s)	1171	7.68(H-C(4))	7 18 (s)	120.7	7.60(H-C(4))	
C(6) C(7)	()	143.7 138.2	7.32 (H–C(5)) 7.32 (H–C(5))	(c)	140.6 134.4	$3.16 (H_{\beta}-C(9)) 7.18 (H-C(5)), 2.87 (H_{a}-C(9)), 3.16 (H_{\beta}-C(9)), 3.16 (H_{$	
$\mathbf{C}(0)$		152.0			150.0	5.67 (H_{α} -C(11))	
U(8)	862 (br. a)	153.9		9.26 (br. c)	152.8	$3.16 (H_{\beta} - C(9))$	
C(8a)	8.05 (01. 3)	138.5	7.68 (H–C(4)), 1.60 (Me(15)), 1.60 (Me(16))	8.50 (01.3)	135.0	7.60 (H–C(4)), 7.18 (H–C(5)), 1.54 (Me(15)),	
$H_{\alpha}-C(9)$	2.94 $(dd, J = 17.6, 8.0)$	26.1	2.72 (H_a -C(10))	2.87 (<i>dd</i> , <i>J</i> = 17.2, 4.8)	29.7	1.54 (We(10))	
$H_{\beta}-C(9)$	3.23 (<i>dd</i> , $J = 17.6, 3.6$)			3.16 (<i>dd</i> , <i>J</i> = 17.2, 8.8)			
$H_{\alpha}-C(10)$	2.72 (<i>m</i>)	53.8	2.94 (H_{α} -C(9)), 3.23 (H_{β} -C(9)), 0.80 (Me(13)), 1.05 (Me(14))	3.47 (<i>m</i>)	44.3	1.25 (Me(14))	
C(11)		207.4	7.32 (H $-$ C(5)), 3.23 (H $_{a}-$ C(9))				
H_{α} -C(11)			μ	5.67 $(d, J = 6.0)$	85.8	3.16 (H_{β} -(9)), 7.18 (H -C(5)), 3.13 H_{q} -C(13))	
H-C(12)	2.31 <i>(m)</i>	29.6	2.94 (H_a -C(9)), 0.80 (Me (13)), 1.05 (Me(14))				
C(12)					178.8	3.47 (H_{α} -C(10)), 1.25 (Me(14))	
$\begin{array}{l} \text{Me}(13) \\ \text{H}_{\alpha} - \text{C}(13) \end{array}$	0.80 (d, J = 6.8)	17.9	1.05 (Me(14))	3.13 <i>(m)</i>	38.8	2.87 (H_a -C(9)), 1.25 (Me(14))	
Me(14)	1.05 (d, J = 6.8)	20.8	0.80 (Me(13))	1.25 (d, J = 7.2)	12.1		
Me(15) Me(16)	1.60 (s) 1.59 (s)	24.1 24.1	1.59 (Me(16)) 1.60 (Me(15))	1.55 (s) 1.54 (s)	24.4 24.2	1.54 (Me(16)) 1.54 (Me(15))	

Table 2. ¹*H*- and ¹³*C*-*NMR Data* (δ in ppm, *J* in Hz) of **2** and **3** in (D_{δ})Acetone. Arbitrary numbering (see Fig. 2).

tertiary O-substituted C-atom at δ 85.8 and a quarternary C-atom at δ 178.8, and its IR spectrum indicated the presence of a γ -lactone ring. The EI-MS spectrum of **3** showed significant peaks at m/z 283 ($[M - Me]^+$), 255 ($[283 - CO]^+$), 240 ($[M - a - 2 H]^+$), and 211 ($[M - b - 2 H]^+$) in accordance with the proposed structure. The relative configurations at C(10), C(11), and C(13) were deduced from the NOESY cross-peaks H–C(10)/H_a–C(9), H–C(11), and H–C(13), establishing that H–C(10), H–C(11), and H–C(13) are on the α -side (*Fig.* 2).

The uncommon structure of amentotaxin BA (1) results from the spiro-annulation of an abietane-type diterpene and a kaurane-type diterpene. The terpenoid 3 can be biologically derived from 2 by lactonization of OH-C(11) and COOH-C(12), the latter being formed in 2 by reduction at C(11) and oxidation at C(13).

This work was supported by a grant from the *National Science Council* (NSC90-2320-B037-042) and partially supported from a grant from the *Health Research Institute of Republic of China* (NSC90-2323-B037-002).

Experimental Part

General. M.p.: uncorrected. Optical rotations: Jasco DIP-370 digital polarimeter. UV Spectra: Jasco UV/ VIS spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Perkin Elmer 200 FT-IR spectrophotometer; v in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Varian Unity-400 spectrometer; at 400 and 100 MHz, resp.; δ in ppm, J in Hz. MS: JMSHX100-mass spectrometer; m/z (rel. %).

Plant Material. Whole plants of *A. formosana* were collected at Kaohsiung Hsien, Taiwan, R. O. C., during July 1990, and a voucher specimen (9001) has been deposited at the Department of Medical Chemistry, School of Pharmacy, Kaohsiung Medical University.

Extraction and Isolation. CHCl₃ extract (15.7 g) of air-dried barks (0.7 kg) of *A. formosana* was chromatographed over silica gel. Elution with $CH_2Cl_2/Me_2CO 50:1$ yielded **1** (5 mg). The CHCl₃ extract (6.5 g) of the heart woods (1.6 kg) of *A. formosana* was chromatographed over silica gel. Elution with hexane/acetone $1:0 \rightarrow 0:1$, gave a 1st fraction with hexane/acetone 6:1, which was purified by column chromatography (silica gel, CH_2Cl_2) to afford **2** (8 mg), and a 2nd fraction with hexane/acetone **3**:1, which was also purified by column chromatography (silica gel, hexane/AcOEt 3:4) to afford **3** (15 mg).

Amentotaxin BA (= 3',4'-Dihydro-7''a,11''-dihydroxy-12''-methoxy-13H-abieta-8'',11'',13''-trien[10'',1'': 3',4']cyclopenta[2',1':13,16]ent-17-norkaur-13(16)-ene-3'',15-dione = 1,2,2a,3,5,5a,9,9a,10,11,12,13,13a,13b,14,15-hexadecahydro-1,16-dihydroxy-18-isopropyl-17-methoxy-3,3,10,10,13a-pentamethyl-8H-7a,15a-methano-[2',1':5,6]azuleno[2,1-a]phenanthrene-4,7-dione; 1): Colorless oil. $[a]_{D}^{25} = -36$ (c = 0.20, CHCl₃). IR (KBr): 3440, 1713, 1650. ¹H-NMR (CDCl₃, 400 MHz): Table 1. ¹³C-NMR (CDCl₃, 100 MHz): Table 1. EI-MS (70 eV): 614 (22), 596 (1), 330 (0.3), 310 (16), 270 (66). HR-EI-MS: 614.3975 (C₄₀H₅₄O₅'; calc. 614.3971).

Amentotaxin WA (=(2R)- or (2S)-2,3-Dihydro-4-hydroxy-2-isopropyl-5,5-dimethyl-1H-cyclopenta[b]naphthalen-1,6(5H)-dione; **2**): White powder from CHCl₃. $[a]_D^{25} = -2.4$ (c = 0.1, acetone). UV (MeOH): 219 (4.19), 238 (3.83), 270 (4.32), 307 (3.93), 350 (sh, 3.54). IR (KBr): 3171, 1720, 1636,1600. ¹H-NMR (400 MHz, (CD₃)₂CO): *Table* 2. ¹³C-NMR (100 MHz, (CD₃)₂CO): *Table* 2. EI-MS (70 eV): 284(2), 242(19), 241 (2) 227(11), 214(33), 199(17), 172(12), 185(7), 181(5), 141(36), 128(14), 115(62), 55(100). HR-EI-MS: 284.1409 (C₁₈H₂₀O₃⁺; calc. 284.1412).

Amentotaxin WB (= rel-(3R,3aS,10bR)-3a,4,6,10b-Tetrahydro-5-hydroxy-3,6,6-trimethyl-2H-benzo[5,6]indeno[1,2-b]furan-2,7(3H)-dione; **3**): White powder from hexane/acetone. $[a]_D^{25} = -48.4 (c = 0.1, acetone)$. UV (MeOH): 212 (4.13), 225 (4.24), 312 (4.74). IR (KBr): 3244, 1743, 1652, 1562. ¹H-NMR (400 MHz, (CD₃)₂CO): Table 2. ¹³C-NMR (100 MHz, (CD₃)₂CO): Table 2. EI-MS (70 eV): 298(6), 283(3), 270(7), 255 (3), 240 (1), 239(6), 226(17), 211(61), 197(26), 181(40), 172(35), 165(52), 141(44), 128(73), 115(87), 91(51), 55(100). HR-EI-MS: 298.1209 (C₁₈H₁₈O₄⁺; calc. 298.1205).

REFERENCES

[1] H. J. Su, S. H. Day, S. Z. Yang, M. Y. Chiang, C. N. Lin, J. Nat. Prod. 2002, 65, 79.

[2] U. Langenbahn, G. Burkhardt, H. Becker, Phytochemistry 1993, 33, 1173.

[3] D. P. Kelly, D. R. Leslie, B. D. Smith, J. Am. Chem. Soc. 1984, 106, 687.

Received March 15, 2002